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a b s t r a c t 

Gaps in time series as well as the absence of such series make the implementation of prediction system 

difficult. This paper proposes a new methodology to fill gaps in time series that do not present fixed 

sampling rate. This paper also proposes the development of two forecast models for time series. The first 

model is based on autoregressive multilayer neural network that uses only the desired time series, while 

the second one is developed with multilayer neural network that uses pattern recognition in order to 

perform indirect predictions of a certain variable. Therefore, the second model does not need the variable 

time series to make predictions, but any time series that has correlation with the desired variable. The 

methodology is tested in limnological variables collected in the Paraguay River since 1987, and the results 

observed in each process are presented in order to validate the methodology of gap filling and forecast 

used. 

© 2019 Elsevier Ltd. All rights reserved. 
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. INTRODUCTION 

Studies, observations and conclusions about phenomena are

ossible thanks to past information obtained through collections.

hese collections usually have a fixed sampling rate and are stored

n time series where the time position of each sample is preserved.

f the time series that govern the behavior of specific phenomenon

re available, it is possible to generate computational models that

an predict the phenomenon behavior. Time series can be inter-

reted as a vector where each position represents the observed

alue for a particular system variable at a specific time point. Fur-

hermore, the collections are ordered in the vector in a chrono-

ogical way, which makes it easier to observe the behavior of the

ariable. [1] say that some temporal series derived from natural,

hysical or economic phenomena have characteristics that are re-

eated from time to time (seasonality), and these characteristics

an or not be governed by linear patterns 

In order to process and extract useful information from a time

eries, it is essential that all samples are equally spaced, the inter-

al collected is sufficiently large and without gaps. Nevertheless,
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their time series, Chaos, Solitons and Fractals, https://doi.org/10.1016/j.
he presence of gaps in time series is unavoidable and affects the

xtraction of information from them [2] . [3,4] cite some reasons for

he existence of gaps in time series such as: human faults, extreme

eather, failure in measuring equipment and equipment failures

hat store these data. Several methods have been developed to fill

aps in time series, such as singular spectrum analysis [5] , Ko-

onen self-organizing maps [6] , multiple imputation method [7,8] ,

ultiple regression analysis [9,10] and parametric regression [11] . 

The singular spectrum analysis performed by [5] combines

ignal processing, system dynamics and multivariable statistics.

his method presents good results for gap filling, but it requires

hat part of the existing signal present similar dynamics to what

ne wishes to complete and time series from periodic collec-

ions. [6] affirm that Kohonen self-organizing maps can fill gaps in

ata with high accuracy rate, depending on the amount of training

ata available. However, it is composed of very complex mathe-

atical methods which end up requiring a high processing power.

he multiple imputation method demonstrates efficiency for small

ata gaps, and it is not possible to reproduce with the same perfor-

ance with the increase in the gap length, generating a limitation

n the application of the method [8] . 

The multiple regression method used for filling gaps is a ro-

ust version of linear least squares prediction. According to [10] ,

his method is extremely resistant to the presence of outliers, but
et al., Indirect prediction system for variables that have gaps in 
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it does not always demonstrate the best performance and does not

present good results for few samples. Finally, parametric regression

proposed by [11] is used when the gaps are generated by difficul-

ties in collecting data in known systems, because it requires com-

putational models to fill the gaps. Therefore, this method does not

work in systems where the computational model does not exist. 

Prediction systems are widely used in the most diverse areas

in order to obtain future projections about a certain phenomenon,

for instance: economic sciences to forecast stocks [12] , engineering

to forecast energy consumption [13] , ecology to predict deforesta-

tion [14] , and in medicine to predict the onset of diseases [15] .

Time series are normally used in the implementation and execu-

tion of predicting systems. There are several prediction techniques

that use time series such as: models based on artificial neural net-

works [12] , models based on interconnected blocks [16] and NAR-

MAX models [17] . Although the existence of time series facilitates

the understanding of the phenomena which enable the develop-

ment of prediction systems, not all variables have such time series,

making it difficult to obtain prediction systems that perform good

future projections. 

[12] explain that models based on neural networks try to map

the tendency and seasonality of the previous samples to generate

model capable of predicting the next sample of the series. Besides,

its performance is related to the quantity and quality of the sam-

ples submitted during the parameter estimation. According to [17] ,

models that uses interconnected blocks are able to predict future

values, but this kind of prediction system requires times series of

other variables that have strong correlation with the analyzed vari-

able, as well as time series of the analyzed variable itself. The NAR-

MAX models used by [17] , are predictive system options that use

basically the same structure of the interconnected blocks models,

and therefore can be substitutes to them. 

The purpose of this article is to present a new methodology to

fill gaps in time series through systems identification techniques

and spectral analysis. In addition, this article proposes the use of

these time series for the development of a prediction system for

all variables. Some time series will be predicted through its own

time series, and the other ones will be predicted indirectly through

their correlation with the already predicted time series, proving

the non necessity of the existence of time series of each variable

in order to create prediction system. Finally, time series of physical

and chemical variables of the Paraguay River, which have gaps and

do not have fixed sampling rate, were made available by Embrapa

Pantanal and the Brazilian Navy in order to validate the proposed

methodology. 

This paper is organized as follows: Section 2 describes the pro-

posed methodology for filling gaps in time series and the pre-

diction system. Section 3 presents the results obtained with the

methodology proposed both for filling gaps and for the prediction

system. Finally, Section 4 closes this article pondering the findings

raised in this paper. 

2. Methodology 

This section presents the proposed methodology for filling

gaps using spectral analysis and systems identification. It also

presents an indirect prediction system and how to validate the

proposed methodology. Fig. 1 presents the flowchart of the pro-

posed methodology that contemplates all the steps to fill the gaps

and development of the prediction system based on ANN. 

2.1. Gap filling 

There are several problems in time series that impair its use

as a source of information for pattern recognition. There are two
Please cite this article as: J.S. Bulhoes, C.L. Martins and M.D. Oliveira 
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ecurring problems in time series from collections. The first prob-

em is the non-existence of a fixed sampling period and the sec-

nd problem is the existence of collection failures in certain peri-

ds of time, which generates gaps in the time series. The proposed

ethodology to fill gaps in the time series and standardization of

he sampling frequency is composed of the following steps: i) pre-

rocessing of the data, ii) interpolation of the collected data and

pectral analysis, iii) identification of the system and iv) validation

f the model. 

To perform analyzes of several time series with no fixed sam-

ling rate and with gaps inside it using system identification, it

s necessary to have at least one time series with fixed sampling

ate, without gaps and with some relation with the other time se-

ies studied. when the time series with fixed collection frequency

s found, this is called the input time series S i , which is the basis

or defining the fixed sampling frequency for the other time series,

n order to standardize the existing data. The regularization of the

paces between the samples assists in locating the regions where

he gaps are. 

By analyzing the time series it is possible to find the fundamen-

al frequency F f of each one. Given the fundamental frequencies

f the time series analyzed, it is possible to identify its gaps. The

aps are divided into two groups: Group I consisting of gaps with

ize < 25% of the fundamental period T f of the time series; and ii)

roup II consisting of gaps with gaps of ≥ 25% of the T f of the time

eries. In Group I, the gaps can be filled via the interpolation pro-

ess. In Group II, the gaps can not be filled via interpolation pro-

ess, since in this case, the interpolation method interferes in the

ynamics of the analyzed variable. Fig. 2 illustrates the division of

roup I and Group II. 

In Fig. 2 , the curve represents the values assumed by a given

ariable over time and the points represent the collected samples

ver the same time interval. It can be seen from Fig. 2 that the

aps from Group I (time interval represented by yellow color) can

e filled by interpolation because of the proximity between the

ollections, while Gaps from Group II can not be filled by interpo-

ation because it will not represent the dynamics of the variable. 

After identifying each group of gaps in the time series, the lin-

ar interpolation process is performed. In this case, the interpo-

ation does not change the dynamics of the series, since it only

loses the gaps of Group I and standardizes the frequency in S i . To

lose the gaps from Group II, it is proposed to carry out a spectral

nalysis of the interpolated time series. Since linear interpolation

s used, there is no loss of time series dynamics and the interpo-

ated time series from Group I can be considered as the original

ime series without the gaps. 

Therefore, the fast Fourier transform (FFT) will be used to rep-

esent this time series interpolated in the frequency domain. In the

requency domain, the fundamental frequency F f and all phases θ
nd frequencies ψ (multiples of F f ) with relevant amplitudes can

e observed and extracted. With the values of F f , θ and ψ , it is

ossible, using the inverse Fourier transform, to generate a new

ime series using the relevant parameters of the original time se-

ies. The purpose is to create the new time series based on the

riginal series and replaces the regions where the gaps from Group

I are located. Thus, with the Group II gaps closed through spectral

nalysis, all time series are with the same sampling frequency as

he time series S i and without a gaps. 

In order to refine the results obtained with the spectral analy-

is, constructing the time series without gaps and with fixed sam-

ling rate, a system identification method is going to be used. This

ethod perform a fine adjustment and identifies possible errors

btained in the spectral analysis. In this way, the system identifi-

ation is used to: i) construct the mathematical model that rep-

esents the time series of each analyzed variable and ii) verify

he response of the system to the regions where they locate the
et al., Indirect prediction system for variables that have gaps in 
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Fig. 1. Flowchart of the proposed methodology for gap filling in time series and prediction system for flooded areas. 

Fig. 2. Illustration of the method used for data division into Group I and Group II based on the fundamental period of the signal. 
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aps from Group II. The system identification model used is the

ammerstein–Wiener block-oriented model because it can con-

truct a mathematical structure capable of mapping both the non-

inearities in the inputs and the nonlinearities of the outputs. 

In order to obtain the appropriate structures, the parameters

rom Hammerstein-Wiener block-oriented model should be op-

imized. Different methods of nonlinear optimization are imple-

ented, aiming to find the mathematical structure that best rep-
Please cite this article as: J.S. Bulhoes, C.L. Martins and M.D. Oliveira 

their time series, Chaos, Solitons and Fractals, https://doi.org/10.1016/j.
esents the time series. The optimization methods used to esti-

ate the structure parameters are: Gauss–Newton adaptive search

ethod (GNA), Levenberg–Marquardt least squares method (LM),

nd the combination of these two ones GNA/LM. These methods

ere chosen because of their performance in identifying nonlinear

ystems. 

The amount of input regressors R i , as well as the quantity of

utput regressors R o are variables that define the best structure for
et al., Indirect prediction system for variables that have gaps in 
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Fig. 3. Flowchart for estimating Hammerstein-Wiener model structures. 
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the Hammerstein-Wiener model. The amount of R i used is limited

in the closed range of n 1 to n 2 , where n 1 and n 2 are the minimum

and maximum numbers of R i , respectively. The amount of R o is

limited in the closed range of p 1 to p 2 , where p 1 and p 2 are the

minimum and maximum numbers of R o , respectively. 

Several structures are generated for each time series (each se-

ries represents a variable), and the structure that best fits the data

is chosen to represent the time series and to fine tune between the

original time series and the time series constructed by the spectral

analysis. The flowchart of Fig. 3 illustrates the proposal to estimate

the parameters of the structure that represents the original time

series. The k variable represents the optimization methods used, g

is the amount of input regressors, and h is the amount of output

regressors. 

To estimate the structures according to Fig. 3 , start with k as-

suming value 1, g assuming value n 1 and h assuming value p 1 .

After setting the values of k, g and h , the Hammerstein-Wiener

model is generated with g input regressors, h output regressors

and using the optimization method chosen in the parameter k . The

three loop guarantee the creation and estimation of all combina-

tions of possible structures with the parameters k, g and h within

their respective intervals. 
Please cite this article as: J.S. Bulhoes, C.L. Martins and M.D. Oliveira 
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.2. Prediction system using artificial neural networks 

Having the time series with the gaps filled through the spec-

ral analysis and treated through the system identification process,

hey can be used in the prediction system. However, if there is

n excessive number of data samples in the time series, it is nec-

ssary to resample them in order to reduce the number of sam-

les. This procedure is necessary to reduce the computational ef-

ort in the development of the forecasting system. Fig. 4 illustrates

he process of resampling the time series, where the dots in blue

epresent the original time series. The resampled time series con-

ains only the red dots, equally spaced and with a sampling period

igher than the original series and obeying Nyquist-Shannon sam-

ling theorem. 

After the time series are resampled, the normalization process

s required. This process standardizes the values of all the variables

time series) in a certain predefined interval. This amplifies the

bility of the forecasting system to generalize. The expression (1) is

sed in order to perform the linear normalization process, where

 1 and d 2 are adjusted values in order to prevent ANN from ob-

aining negative values. The ANN used is multilayer Perceptron

MLP), composed of two configurations in cascade: prediction ar-

ificial neural network (PANN) based on information from the time

eries and classification artificial neural network (CANN) based on

ased on other time series patterns that influence the desired vari-

ble. 

˘
 ( j) = 

[ x ( j) − x ( j min ) ](d 2 − d 1 ) 

x ( j max ) − x ( j min ) 

(1)

When analyzing variables (time series) that are correlated,

here is a need to identify which variables influence the other vari-

bles. The PANN performs forecast only in the σ time series, where

are the time series that represent the variables that exert some

nfluence on the others. The CANN performs the forecast using the

tandards presented in the input layer, and thus, the σ time series

orecast by PANN are the input presented to CANN. In this way,

he other time series that receive influence of the sigma time se-

ies are predicted using the CANN. 

For the training and validation of the PANN and CANN, the time

eries will be divided into two distinct sets: data set A and data

et B , where the data set A is composed of the values of all time

eries from t 0 to t 1 , and data set B is composed of the values of

ll time series from t 1 + 1 to t 2 . The t 0 value represents the fist

osition of the vector t , while t 1 is an arbitrary value between t 0 
nd t 2 . If t 2 is not the last position of the vector t , the remaining

alue of this vector are allocated in data set A . 

.2.1. Prediction artificial neural network 

In the PANN is used autoregressive model (feedback). The PANN

as a feedback structure whose main objective is to provide the

nputs, past values of the analyzed variable (regressors). The PANN

ses past information of the variable x i ( t ) in order to estimate the

ext value reached ( x i (t + 1) ), where t represents the position of a

ample in the time series, and i = 1 , 2 , · · · , σ are the variables to

e predicted. Fig. 5 illustrates the PANN architecture. 

In Fig. 5 , the amount of PANN input is represented by r i and

ach input is composed of a regressor. These regressors may or

ay not contain the delay d , for example: ˜ x i (t − d) , ˜ x i (t − d − 1) ,

˜  i (t − d − 2) , . . . , ˜ x i (t − d − r i + 1) , where the presence of the de-

ay influences the PANN response and assists in the creation of

ong-term forecasts. 

To train PANN it is necessary to first find the topology (PANN

eometry) that best suits to solve the problem. This topology is

ound through several empirical tests varying the number of neu-

ons per layer, number of hidden layers, and number of input re-

ressors r required. By varying these parameters the performance
i 

et al., Indirect prediction system for variables that have gaps in 
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Fig. 4. Illustration of the method used to resample the time series of each variable, where the blue dots represent the existing samples and the red dots represent the 

resampled signal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Prediction artificial neural network (PANN) based on autoregressive model. 
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f PANN is observed in order to find the best configuration. For σ
ime series (variables) it is necessary σ PANN, where the topology

ay or may not be the same, however the weights and bias are

ifferent since each time series has its own characteristics. In this

ay, sigma PANN creation, training and testing are something that

emands time and computational effort. 

The PANN training uses the supervised backpropagation algo-

ithm in order to estimate the weights and bias. The data set A

s randomly subdivided into two subsets: training subset A 1 and

alidation subset A 2 . The subset A 1 is reserved for PANN training

hile the subset A 2 is used as one of the PANN stopping criteria

ecause it can indicate the ability to recognize the variable’s pat-

erns. 
Please cite this article as: J.S. Bulhoes, C.L. Martins and M.D. Oliveira 
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.2.2. Classification artificial neural network 

The goal of the CANN is to predict the ρ time series that are

nfluenced by the σ time series already predicted. Thus, the ρ
ime series forecasts are receiving the standards of the σ time se-

ies. In conclusion, the inclusion of the CANN in cascade with the

ANN, the prediction system reduces the computational effort due

o the reduction of the number of PANN and it inserts the char-

cteristics of the independent variables in the prediction CANN =
 (PANN). 

The CANN is also a multilayer Perceptron where its inputs are

he outputs of PANN. The outputs of the CANN are the predictions

f the time series. In addition, The best network topology for CANN

s found by empirically varying the parameters: number of neurons
et al., Indirect prediction system for variables that have gaps in 
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Fig. 6. Classification artificial neural network (CANN) used to perform indirect prediction form other variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L  

T

 

s  

t  

v  

w  

i  

t  

a  

p  

t  

t  

v  

q  

t  

s  

R

3

 

w  

s  

h  

t  

t  

n  

s  

b  

s  

p  

t

 

l

o  

1  

t  

q

 

g  

g  

e  

9  

I  

g  
per layer and number of hidden layers. Fig. 6 illustrates the CANN

model, where ˜ y i (t + 1) are the predicted values. 

In Fig. 6 , the input x 1 , x 2 , . . . , x σ are the σ time series (vari-

ables that exert influence on the others), which are predicted

by the PANN. The outputs ˜ y 1 (t + 1) , ̃  y 2 (t + 1) , . . . , ̃  y ρ(t + 1) are

the ρ time series predicted indirectly by CANN (variables that

are influenced by σ time series). The CANN training also uses

the Levenberg–Marquardt supervised backpropagation algorithm to

find the weights and biases. 

2.3. Model validation 

In order to validate the method of filling in the gaps, samples

are taken for later comparison with those obtained by the iden-

tified model. The relation between the collected samples and the

values found by the proposed method gives the percentage of the

error committed. The validation of the forecasting system com-

posed of PANN, Fig. 5 and CANN, Fig. 6 uses the data set B which

consists of the samples between t 1 + 1 and t 2 from all time series.

The expression (2) calculates the mean square error between the

output of PANN/CANN and the data set B . 

E s = 

√ 

1 

n 

n ∑ 

i =1 

e 2 
r(i ) 

(2)

3. Results 

This section presents the results obtained from the proposed

methodology and is structured in: presentation of the database,

application of the proposed method to fill gaps in time series and

application of time series in the development of the prediction sys-

tem. 

3.1. Database 

In this work two databases were used: i) Paraguay River

level database provided by the VI Naval District of the Brazil-

ian Navy and physical-chemical database of water quality of the

Paraguay River provided by Embrapa Pantanal located in the city

of Corumba-Brazil. The analysis period was from October 1 st , 1987

until May 10 th , 2018, totaling 30 years of collection of the physi-

cal and chemical variables of the water of the largest river in the

Pantanal biome. Pantanal is one of the largest areas subject to an-

nual flood of the world and its diversity attracts researchers from

all over the world. Fig. 7 illustrates the point P 1 where the wa-

ter collections are made. The Brazilian Navy located in the city of
Please cite this article as: J.S. Bulhoes, C.L. Martins and M.D. Oliveira 
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adario monitors the level of the Paraguay River daily since 1900.

his variable has a fixed sampling period and no gaps. 

All collections were carried out following protocols such as the

ame time and place ( P 1 ) of sampling, same methods of collec-

ion and analysis, which guarantees high reliability of the data. The

ariables collected by Embrapa Pantanal and marine used in this

ork are: i) Paraguay River level ( L R ), ii) water temperature ( T W 

),

ii) dissolved oxygen ( O D ), iv) potential of hydrogen ( pH ), v) elec-

rical conductivity of water ( C E ), vi) free carbon dioxide ( D C ), vii)

lkalinity ( A L ), viii) total dissolved nitrogen ( N D ), ix) inorganic sus-

ended matter ( M I ), x) transparency ( T R ), xi) turbidity ( T U ) and xii

he flooded area ( A F ). The A F variable is used only in the predic-

ion system. The time series formed by the chemical and physical

ariables provided by Embrapa Pantanal do not contain a fixed fre-

uency, and it is necessary to use the process of filling in gaps so

hat the data can be used in the development of the prediction

ystem to assist in the monitoring of water quality of the Paraguay

iver. 

.2. Gap filling 

The L R time series was the only one that did not present gaps,

ith sampling period T s and one sample per day, totaling 10,304

amples equally spaced. As the L R time series contains T s fixed and

as relation with the other time series, it could be used in the sys-

em identification process and for this reason, it is called the input

ime series S i . Observing the existence of gaps and finding S i , the

ext step was to find the fundamental frequency of the all time

eries. Since all the time series worked has its dynamics controlled

y the flood pulse, the fundamental period T f of the other time

eries has approximately the same value of S i , being its value ap-

roximately 365 days. This is because the flood cycle is annual due

o several factors such as rainy season, relief among others. 

After finding the fundamental frequency of all time series ana-

yzed, it is possible to locate the gaps. The sampling frequency F s 
f all time series should be set to one sample per day, which totals

0,304 samples, equal to the S i used. Table 1 provides the informa-

ion collected for each of the time series analyzed, where Q s is the

uantity of existing samples of each variable. 

The gaps were divided into two groups: Group I, composed of

aps < 25% of T f of the time series, and ii) Group II, consisting of

aps ≥ 25% of T f of the time series. Since the T f of all time series is

qual to 365 days, 25% of this value is equivalent to approximately

1 days. Therefore, Group I contains gaps up to 91 days and Group

I has gaps longer than 91 days. After identifying each group of

aps in the time series, the linear interpolation in the Group I was
et al., Indirect prediction system for variables that have gaps in 
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Fig. 7. Illustration of the region P 1 , where the water samples were collected in the Paraguay River. 

Table 1 

Gap analysis for the used limnological variables. 

Var. Q s Largest gap [days] Gap ≥ 25% T f Gap < 25% T f 

L R 10304 – – –

T W 323 1199 2 320 

O D 331 1045 3 327 

pH 344 685 4 339 

C E 349 303 6 342 

D C 326 773 4 321 

A L 339 685 5 333 

N D 261 2011 6 354 

M I 241 482 1 339 

T R 340 685 5 334 

T U 228 369 2 325 

Table 2 

Spectral analysis of the used time series. 

Var. A f F f θ f M B 

[ 10 −3 / day ] [ o ] 

T W 3.35 2.76 −95.42 1 27.77 

O D 1.64 2.76 −6.14 1 4.32 

pH 0.22 2.51 108.02 3 6.37 

C E 4.57 2.51 −54.30 5 49.30 

D C 25.93 2.74 54.27 10 30.81 

A L 55.87 2.76 120.05 5 412.05 

N D 46.60 2.77 −73.75 1 83.00 

M I 13.29 2.67 −151.09 1 23.35 

T R 29.56 2.76 120.07 1 61.64 

T U 22.47 2.66 −154.08 1 31.13 
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erformed to standardize the F s of the time series in 1 sample per

ay. This linear interpolation is given by (3) , where the points [ t i ,

 ( t i )] and [ t f , x ( t f )] represent the samples before and after the in-

erpolated gap, respectively. 

ˇ
 i (t) = 

[ x (t f ) − x (t i )] t 

t f − t i 
+ x ( t i ) −

[ x ( t f ) − x ( t i )] t i 

t f − t i 
(3)

The largest collection period of Group I of each time series is

sed to perform the spectral analysis. This interval is interpolated

nd subsequently represented in the frequency domain, where F f 
nd all phases θ , frequencies ψ , and the displacement of the y-axis

 could be analyzed in order to generate a new signal. The Table 2

rovides the results for all variables, where A f is the amplitude of
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undamental frequency, F f is the fundamental frequency, θ f is the

hase of fundamental frequency, M is the number of ψ analyzed

requencies, and B is the displacement of the signal in the axis of

he ordinates. The variables pH, C E , D C and A L used more ψ , since it

as observed that some relevant characteristics of these variables

ere not observed with low values of ψ . 

The extracted frequencies were used to construct new time se-

ies that have the characteristics of the analyzed time series. Fig. 8

llustrates the separation of the groups, the linear interpolation of

he Group I (blue curve), and the reconstructed signal via spectral

nalysis for the filling gaps on the Group II (green curve) for the

 W 

variable. The red curve is presented to show how the linear

nterpolation does not represent the real dynamics of the water

emperature variable in the Group II. 

With all the time series filled by linear interpolation and spec-

ral analysis, the next step was to identify the systems using

 Hammerstein-Wiener block-oriented model. This identification

romotes the search for a signal closer to the real one (fine tun-

ng) to replace the signal inserted in the gaps from Group II. Fig. 9

hows the time series of Paraguay River level measured in the

adario ruler, which was chosen earlier as Si due to its relation

o the other time series. 

The structure of the Hammerstein–Wiener model chosen was

he sigmoidal function due to its characteristic of being lim-

ted between two points, which provides a desired representation

or the variables with periodic dynamics. The parameters estima-

ion for each structure was performed with the implementation

f three different optimization methods: Gauss-Newton adaptive

earch method (GNA), Levenberg-Marquardt least squares method

LM), and the combination of these two ones GNA/LM. 

The search for the best structure for the Hammerstein–Wiener

odel was performed with different amounts of input and out-

ut regressors. The number of input regressors was limited in the

losed range of n 1 to n 2 , adopting n 1 = 60 and n 2 = 90 , totaling 31

ifferent possibilities. The amount of output regressors was lim-

ted to the closed range of p 1 a p 2 , where p 1 = 2 and p 2 = 11 ,

otalizing ten distinct possibilities. In the 31 variations of input re-

ressors, ten variations of output regressors and the three methods

f parameter optimization, 930 structures were estimated for each

f the ten time series analyzed, using all possible combinations as

hown in the flowchart of Fig. 3 . 
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Fig. 8. Spectral analysis applied to the time series of the water temperature variable where the black dots are the collected samples, the red curve are the interpolated signal 

on Group II, the blue curve represents the interpolated signal on Group I, and the green curve is the result of the spectral analysis. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Time series of Paraguay River Level ( L R ) measured by Brazilian Navy in Ladario city. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Analysis of the parameters obtained for the water temperature and dissolved oxy- 

gen. 

Parameter T W O D 

E 1 E 2 E 1 E 2 

R i 84 84 88 89 

R o 8 7 2 2 

M o LM LM GNA GNA 

E l 8.97 7.71 25.50 23.85 

E s 3.70 3.88 4.50 4.93 

E a 0.60 ◦C 0.62 ◦C 0.41 mg/L 0.45 mg/L 
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3.3. Gap filling validation 

The validation of the proposed method for filling the gaps uses

two original samples of each series, and the mean squared error

E s of all collected samples given by (2) . For each analyzed series,

two structures ( E 1 and E 2 ) of the 930 structures that obtained the

best results were separated for analysis and are shown in Fig. 10

through Fig. 14 , where the Ref curve represents the reference time

series, the curves E 1 and E 2 represent the Hammerstein-Wiener

time series for each structure. Finally, the validation and choice of

the best structure was conditioned to its performance in approach-

ing the values obtained to the two original values. The local error

E l is defined by (4) , where m l is the value returned by the math-

ematical model and s l is the sample value taken from the initial

time series in order to perform this validation. The parameters s max 

and s min are the maximum and minimum values present in the

time series s , respectively. In addition, the samples taken for this

validation were the last sample before the largest gap and the first

sample after it. Only two samples were used because there were

few samples for each variable. 

E l = 

| m l − s l | 
s max − s min 

(4)

It was observed that all variables presented the same optimiza-

tion method for E 1 and E 2 , which is probably an inherent charac-

teristic of each variable to adapt better to a given method. In addi-

tion, the difference in the amount of input regressors presented by
Please cite this article as: J.S. Bulhoes, C.L. Martins and M.D. Oliveira 
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he E 1 and E 2 structures was small for most of the series analyzed.

or the output regressors, six of the ten time series mapped, pre-

ented their two best structures with the same amount of regres-

ors, which indicates precision in the system identification process,

ince both structures needed the same information to be able to

ap through S i the desired variable. Tables 3 –7 show the amount

f input regressors R i and the amount of output regressors R o for

he structures E 1 and E 2 , as well as the optimization method M o 

sed in the parameter estimation for every analyzed variable. 

For T W 

variable, E 2 was chosen as the best structure, since it

ad the lowest E l as set out in Table 3 . Fig. 10 (a) shows the time

eries obtained by E 1 and E 2 for this variable. The O D variable pre-

ented higher values of E l among all variables, reaching 25.50% for

 , and E s was restricted to 4.50%. In view of this information E 
1 2 
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Fig. 10. Estimated Hammerstein-Wiener model for: (a) water temperature and (b) dissolved oxygen. 

Fig. 11. Estimated Hammerstein–Wiener model for: (a) potential of hydrogen and (b) electrical conductivity of water. 
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Table 4 

Analysis of the parameters obtained for the potential of hydrogen and electrical 

conductivity of water. 

Parameter pH C E 

E 1 E 2 E 1 E 2 

R i 85 76 88 75 

R o 8 8 10 8 

M o GNA GNA GNA/LM GNA/LM 

E l 2.18 3.88 5.25 6.90 

E s 4.11 4.59 3.94 4.55 

E a 0.12 0.13 2.03 μS/cm 2.35 μS/cm 

A

a

 

b  

r  
as chosen, since its E l was almost 2% below E 1 , as presented in

able 3 . Fig. 10 (b) shows the time series obtained by E 1 and E 2 for

he O D variable. 

The structures E 1 and E 2 of the pH presented satisfactory re-

ults in the analyzes, however E 2 presented E s value higher than

 1 . In addition, the E l of E 1 was lower than that of E 2 , and thus, E 1 
as chosen to represent the pH variable. The Fig. 11 (a) presents the

ime series obtained by E 1 and E 2 for this variable. The E 2 structure

f the C E variable presented E l = 6 . 90% as presented in Table 4 and

hus, E 1 which presented E l 1% less than E 2 was chosen in order to

epresent the C E variable. Fig. 11 (b) shows the time series obtained

y E 1 and E 2 for the C E variable. 

The E 1 and E 2 structures of the D C variable obtained E s less than

.8%. This suggests that the spectral analysis would be a reasonable

pproximation to fill in the existing gaps. The E 1 was chosen as it

eached the lowest E l , as shown in Table 5 . Fig. 12 (a) shows the

ime series obtained by E 1 and E 2 for the D C variable. The E 2 pre-

ented E l smaller than E 1 and therefore was chosen to represent

he A L variable. The Table 5 provides the values obtained for the

a  
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 L variable, and Fig. 12 (b) presents the time series obtained by E 1 
nd E 2 . 

The structure chosen for N D was E 1 , since the performance of

oth structures for E l and E s were similar and E 1 has fewer input

egressors, being therefore model with lower computational cost

s observed in Table 6 . Fig. 13 (a) shows the time series obtained
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Fig. 12. Estimated Hammerstein–Wiener model for: (a) free carbon dioxide and (b) alkalinity. 

Fig. 13. Estimated Hammerstein–Wiener model for: (a) total dissolved nitrogen and (b) inorganic suspended matter. 

Fig. 14. Estimated Hammerstein–Wiener model for: (a) transparency and (b) turbidity. 
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Table 5 

Analysis of the parameters obtained for the free carbon dioxide and alkalinity. 

Parameter D C A L 

E 1 E 2 E 1 E 2 

R i 90 88 85 88 

R o 11 8 9 9 

M o GNA GNA LM LM 

E l 2.92 3.71 8.71 7.46 

E s 2.60 2.77 3.36 3.52 

E a 7.43 mg/L 7.92 mg/L 26.15 μeq/L 27.39 μeq/L 

Table 6 

Analysis of the parameters obtained for the total dissolved nitrogen and inor- 

ganic suspended matter. 

Parameter N D M I 

E 1 E 2 E 1 E 2 

R i 72 90 77 79 

R o 5 5 9 9 

M o LM LM GNA GNA 

E l 10.48 10.33 4.02 2.49 

E s 4.37 4.68 4.23 4.23 

E a 16.42 μg/L 17.60 μg/L 4.02 mg/L 4.02 mg/L 

Table 7 

Analysis of the parameters obtained for the transparency and turbidity. 

Parameter T R T U 

E 1 E 2 E 1 E 2 

R i 87 90 87 87 

R o 8 8 10 6 

M o GNA GNA GNA/LM GNA/LM 

E l 5.06 5.62 9.07 10.25 

E s 3.14 3.26 3.00 3.02 

E a 7.46 cm 7.75 cm 3.32NTU 3.34NTU 
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y E 1 and E 2 for the N D variable. The E l of the E 1 and E 2 structures

or the M I variable were below 5%, with the E s also limited to this

alue. However, E 2 presented better results as analyzed in Table 6 .

ig. 13 (b) shows the time series obtained by E 1 and E 2 for the M I 

ariable. 

The E 1 and E 2 structures of the T R variable obtained similar re-

ults among extracted samples. However, the E 1 presented slightly

ower E l as provided in Table 7 . Fig. 14 (a) shows the time series

btained by E 1 and E 2 for the T R variable. The E 2 of the T U vari-

ble presented E l = 10 . 25% while the E 1 got E l = 9 . 07% , as shown

n Table 7 . Fig. 14 (b) shows the time series obtained by E 1 and E 2 
or the T U variable. 

The results on all ten variables identified had E s less than 5%.

ig. 15 presents the distribution of E a in all available collections, in

ther words, the probability of occurrence of the absolute error E a 1 
or each time series, where E a 1 is the difference between the value

btained by the model and the value in the database. 

.4. Prediction system using artificial neural networks 

Before using the time series filled through system identification

nd spectral analysis, they need to undergo a resampling process

o reduce excess data and normalization to standardize all time se-

ies. 

The resampling aims to reduce the size of the time series, since

ime series with excessive data can make the training of artificial

eural networks unfeasible. The resampling of the series used ap-

roximately 11,0 0 0 elements with frequency of the samples fixed
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n one sample per day and reduced to a single sample for every

ve days, which reduces the size of the time series to 2200 ele-

ents, and consequently decreases in approximately five times the

raining time. It is important to note that there are still about 73

amples per T f of the time series. Finally, the time series resampled

ere normalized using Expression (1) where x represents the time

eries, d 1 = 100 , and d 2 = 200 . 

As suggested in the methodology, not all time series were pre-

icted with prediction artificial neural network (PANN). Among the

 time series existing, only σ time series were predicted and with

he σ PANN implemented, the ρ time series remaining used the

lassification artificial neural network (CANN). The sigma chosen

or this work was four, that is, four PANN were implemented to

redict four time series among the twelve existing ones. The series

hosen to be used in the PANN were the Paraguay River level, the

issolved oxygen, the water temperature and the turbidity, since

hey have a significant influence on the other time series proved

y Table 8 . 

The time series of the level interferes in all the other eleven

ariables, the temperature of the water influences in the dissolved

xygen, in the free carbonic gas and in the pH . The turbidity has

 strong relationship with the material in suspension and also in

he replacement of oxygen in the aquatic environment. Finally,

issolved oxygen was also one of the predicted time series with

ANN due to its high correlation with the other variables. The

able 8 shows the correlation of all the eleven variables obtained

rom the analysis of the time series filled previously. 

To carry out the long-term prediction, the delay in the in-

ut signal d of 146 samples was implemented. The 146 sam-

les are equivalent to two years of data, since the sample pe-

iod was adjusted to a sample every 5 days in the data prepara-

ion stage. The PANN implemented took 73 input regressors be-

ause it is long-term forecast, which plans to predict events with at

east two years beyond the trained data. Therefore, the prediction

˜  i (t + 1) depends on the previous values ˜ x i (t − 146) , ˜ x i (t − 147) ,

˜  i (t − 148) , . . . , ˜ x i (t − 218) . 

The PANN implemented for the long-term prediction system

ave two hidden layers, where the first contains 150 neurons and

he second with 30 neurons. The output layer has only one neu-

on to provide the predicted value of the analyzed variable. The

ctivation function used for the two hidden layers of PANN was

he hyperbolic tangent and for the output layer the linear activa-

ion function was used. Finally the training algorithm used was the

evenberg–Marquardt. 

The CANN were implemented with only one hidden layer of

50 neurons and one neuron in the output layer. The best tested

onfiguration was also the hyperbolic tangent and linear activation

unction for the hidden and output layer respectively. Finally, PANN

nd CANN were trained using the training algorithm based on gra-

ient descendent with momentum. 

To validate the long-term forecasting system, the time series

ere divided into: Data set A and data set B . The data set A was

esponsible for training stage and contains data from 1987 to 2010

nd from 2014 to 2017. Finally, the data set B was responsible for

he validation of the prediction system and contain the data from

011, 2012 and 2013, since these three years were atypical years

n the pantanal which will help to verify if the system is able to

redict scenarios not presented. 

The variable L R had E s less than 8% in all years belonging to

ata set B as observed in Table 9 . Fig. 16 (a) presents the predicted

ime series of L R variable. The prediction was carried out until the

ear 2022, and since the PANN has delay d of only two years, the

ther two years were estimated using previously predicted values,

hich can increase the prediction errors. 

The T W 

variable obtained the lowest E s among all predicted

ariables as analyzed in Table 9 . Fig. 16 (b) shows the output of
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Fig. 15. Distribution of the mean absolute error in the structure chosen for the Hammerstein–Wiener model. 

Table 8 

Correlation between all analyzed variables. 

Var. L R T W O D pH C E D C A L N D M I T R T U 

L R 1.00 −0 . 56 −0 . 46 −0 . 26 0.16 0.18 0.41 −0 . 46 −0 . 37 0.72 −0 . 69 

T W −0 . 56 1.00 −0 . 02 0.06 −0 . 01 −0 . 06 −0 . 29 0.40 0.17 −0 . 53 0.58 

O D −0 . 46 −0 . 02 1.00 0.38 −0 . 37 −0 . 28 −0 . 23 0.23 0.28 −0 . 31 0.37 

pH −0 . 26 0.06 0.38 1.00 −0 . 42 −0 . 72 −0 . 03 0.23 0.30 −0 . 20 0.27 

C E 0.16 −0 . 01 −0 . 37 −0 . 42 1.00 0.39 0.33 −0 . 23 −0 . 29 0.03 −0 . 34 

D C 0.18 −0 . 06 −0 . 28 −0 . 72 0.39 1.00 0.25 −0 . 19 −0 . 30 0.13 −0 . 25 

A L 0.41 −0 . 29 −0 . 23 −0 . 03 0.33 0.25 1.00 −0 . 29 −0 . 15 0.36 −0 . 41 

N D −0 . 46 0.40 0.23 0.23 −0 . 23 −0 . 19 −0 . 29 1.00 0.36 −0 . 31 0.62 

M I −0 . 37 0.17 0.28 0.30 −0 . 29 −0 . 30 −0 . 15 0.36 1.00 −0 . 21 0.45 

T R 0.72 −0 . 53 −0 . 31 −0 . 20 0.03 0.13 0.36 −0 . 31 −0 . 21 1.00 −0 . 57 

T U −0 . 69 0.58 0.37 0.27 −0 . 34 −0 . 25 −0 . 41 0.62 0.45 −0 . 57 1.00 

Table 9 

Mean square error for the prediction system. 

Var. 2011 2012 2013 2014 2015 2016 2017 2018 Total 

L R 7.84 7.19 6.48 12.15 7.94 5.39 5.87 4.59 7.18 

T W 4.72 4.19 5.70 9.54 4.17 4.29 4.30 4.72 5.20 

O D 11.93 11.67 8.46 14.79 6.05 9.89 – – 10.46 

T U 4.31 6.64 5.37 10.76 6.68 12.69 4.32 2.92 6.71 

pH 14.41 12.19 7.84 4.76 7.83 5.65 3.57 3.60 7.48 

C E 8.91 8.87 8.37 9.38 9.79 5.43 6.59 5.28 7.83 

D C 18.97 8.46 5.21 4.15 5.74 3.14 3.32 1.65 6.33 

A L 11.35 9.84 4.91 6.86 6.61 6.71 6.57 2.98 6.98 

N D 13.10 14.26 10.30 7.56 4.07 6.84 5.73 4.47 8.29 

M I 8.18 8.74 8.32 8.34 7.84 7.52 6.81 – 7.96 

T R 6.30 2.61 3.32 3.59 7.07 5.75 5.12 9.27 5.37 
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the PANN for the T W 

variable. The results of the O D variable can

be observed in Table 9 , and it is important to know that there are

no values for comparison in 2017 and 2018. This was the variable

that presented the worst performance among those predicted with

PANN. Fig. 17 (a) displays the output of the PANN for the O D vari-

able. 

The T U variable had E s less than 7% for the data set B as shown

in Table 9 . It is observed that among the four predicted variables

with PANN, turbidity is the one that presented the best results in
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his validation set. The Fig. 17 (b) displays the predicted values for

he T U variable. The long-term prediction for the other variables

as performed using the CANN, which has as input the four series

orecast by PANN. This methodology reduces the time of training

nd execution of the network. As the inputs are the PANN with

redicted values for two years, the CANN also obtain prediction

or two years of each manipulated variable. 

The pH variable presented one of the highest E s for the

ear 2011 as observed in Table 9 . Fig. 18 (a) presents the pre-
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Fig. 16. Long-term forecast for the variables: (a) Paraguay River level and (b) water temperature. 

Fig. 17. Long-term forecast for the variables: (a) dissolved oxygen and (b) turbidity. 
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icted time series for the pH variable. The C E variable ob-

ained E s constant in the three years belonging to the data

et B as demonstrate in Table 9 . The Fig. 18 (b) shows the

utput of the CANN for the C E variable. The C E variable has

 strong correlation with the O D ( −0.37) and with the T U 
 −0.34) which helped in the prediction performance of this

ariable. 

The D C variable presented the highest E s for the year of 2011,

hich has diminished in subsequent years as observed in Table 9 .

ig. 19 (a) shows the output of the CANN for the D C variable. The

 C variable has a correlation with the O D ( −0.28) and with the T U 
 −0.25) which does not explain its good results due to weak corre-

ation with the input variables. Like the D C variable, the A L variable

btained E s greater in 2011 and decreases in the following years.

ig. 19 (b) shows the output of the CANN for the A L variable. The

 L variable correlates with L R (0.41) and T U ( −0.41), which corrob-

rates the recognition of the patterns of this variable. 
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The N D variable obtained the highest Total E s among all the pre-

icted variables with the CANN, however the graphic result of the

orecast presented in Fig. 20 (a) shows that the prediction system

as able to observe all the dynamics of this variable. The N D has a

trong correlation with all input variables, mainly L R (-0.46) and T U 
0.62). The M I variable had E s less than 9% for the whole data set B .

ig. 20 (b) displays the predicted time series for the M I variable. 

The T R variable obtained the best results among the other vari-

bles predicted by the CANN. Its performance is related to a strong

orrelation with the four input variables, mainly L R (0.72) and T U 
 −0.57). Fig. 21 shows the prediction of this variable. 

Embrapa Pantanal also made available the flooded area ( A F ) es-

imated through satellite images from February 20 0 0 to Decem-

er 2009 [18] . The important characteristic of the A F variable is

hat it has a strong correlation with the variable NV, which fa-

ilitates the use of the proposed methodology for CANN. [18] re-

ated the flooded area to the level of the Paraguay River through
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Fig. 18. Long-term forecast for the variables: (a) potential of hydrogen and (b) electrical conductivity of water. 

Fig. 19. Long-term forecast for the variables: (a) free carbon dioxide and (b) alkalinity. 

Table 10 

Comparison between the actual values of the flooded area variable and the values obtained in the [18] and CANN 

models. 

Model 20 0 0 2001 2002 2003 2004 2005 2006 2007 2008 2009 Total 

Padovani 15.56 12.65 8.12 10.22 6.54 11.12 14.29 9.26 10.41 14.11 11.20 

CANN 4.54 2.83 3.72 3.03 3.75 2.68 5.01 3.49 4.40 6.74 4.02 
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a  
the expression (5) , where ˜ A s (t) represents the flooded area mea-

sured through satellite images and 

˜ N p (t + 60) is the level of the

Paraguay River in [cm] 60 days after the instant t . Therefore, the

flooded area can be expressed by (6) , where ˜ A p (t) is the estimated

flooded area for the instant t and N l (t + 60) is the level in [cm]

observed in the Ladario rule 60 days after the instant t . 

˜ N p (t + 60) = 

537 . 1 

1 + 4 . 4 4 43 e −0 . 0 0 022 ̃ A s (t) 
(5)
a  
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˜ 
 p (t) = 

−ln 

(
537 . 1 − N l (t + 60) 

4 . 4 4 43 N l (t + 60) 

)
0 . 0 0 022 

(6)

Fig. 22 presents the results obtained for the A F variable and the

rediction for the next four years using the CANN and the expres-

ion (6) . The flooded area given from (6) was presented by the

rown curve, where the results of the CANN adjusted better to the

ctual values of the flooded area, curve in blue color (data set A )

nd dotted black (data set B ). Although Fig. 22 presents the values
et al., Indirect prediction system for variables that have gaps in 

chaos.2019.109509 

https://doi.org/10.1016/j.chaos.2019.109509


J.S. Bulhoes, C.L. Martins and M.D. Oliveira et al. / Chaos, Solitons and Fractals xxx (xxxx) xxx 15 

ARTICLE IN PRESS 

JID: CHAOS [m5G; November 14, 2019;1:34 ] 

Fig. 20. Long-term forecast for the variables: (a) total dissolved nitrogen and (b) inorganic suspended matter. 

Fig. 21. Long-term forecast for the transparency. 
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f the flooded area from 2005, there are data since February 20 0 0,

nd with these data it is possible to compare the model proposed

y [18] and the model proposed in this article. The Table 10 pro-

ides the comparative on both models, where it is observed that

he CANN obtained better performance. 

. Conclusion 

This work proposed a method that uses spectral analysis and

ystem identification to fill gaps in time series with no fixed sam-
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ling rate. Besides, it used the multilayer neural networks for the

evelopment of a prediction system applied to physico-chemical

ariables of the Paraguay River. The difference of this methodology

f filling of gaps with those existing in the literature is the com-

ination of two filling techniques, in order to improve the final

erformance of the process. In relation to the prediction system,

he differential is the indirect prediction of variables through the

lassification neural network, which is capable of recognizing the

ynamics of a variable from other variables with some correlation

ith each other. 

The variables predicted indirectly with the classification neural

etwork had satisfactory performance, producing results that val-

date the proposed method, even those that presented weak cor-

elation with the input variables. The classification neural network

sed four time series, which are: i) Paraguay River level, ii) water

emperature, iii) dissolved oxygen and iv) turbidity. These time se-

ies were already predicted by PANN. This is one of the strengths

f this methodology, because even for series with low correlation

ith the four input variables of the CANN, the results obtained

ere satisfactory. Therefore, with this type of prediction system,

t is not necessary to have the time series of all the variables, just

aving only the time series of variables that influence the others,

s observed in the case study of the flood area variable. 

This work contributes with: new methodology of gap filling in

ime series and the development of indirect prediction system. For

ew studies, it will be interesting to research about the impact

f different optimization techniques for parameter estimation in

ammerstein-Wiener models. Also, it will be useful to test the gap

lling methodology in other time series, as well as to perform new

ndirect predictions in other databases. 
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Fig. 22. Prediction of the flooded area through the CANN model and [18] estimation. 
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